5,612,719

7

high, the gesture 100 is considered to be associated with the
button 66. For example, if the overlap area 104 is more than
40% of the total area of either the bounding box 102 or the
bounding box 88, the gesture 100 can be considered to be
associated with the button 66.

The described stylus gestures, objects, and processes are
preferably accomplished within the context of a “view
system”. In such a view system, various “views” or
“objects” are stacked on top of each other, like pages of
paper on a desk top. These views include a root view (such
as the notepad) and virtually any number of views (within
the limitations of the system) stacked on top of the root view.

The view system is a software routine which returns two
pieces of information when the screen is engaged (“tapped”)
with a stylus. A first piece of information returned is which
view or “object” was tapped. The second piece of informa-
tion returned is the position of the tap on the tapped view.
This location information is often returned in the form of
Cartesian (x-y) coordinates. The view system therefore
handles much of the routine input work for the computer
system. Taps by stylus on non-active areas of the screen can
be ignored by the view system. Likewise, inappropriate
inputs on active areas of the screen can be ignored or can
generate error conditions which can be acted upon by the
system.

The term “object” has been used extensively in the
preceding discussions. As is well known to software devel-
opers, an “object” is a logical software unit comprising data
and processes which give it capabilities and attributes. For
example, an object can be queried as to its type and can
return such data as the number of words that it contains.
Objects can contain other objects of the same or of a
different type. Objects can also be used to project images on
a screen according to their object type. There are many well
known texts which describe object oriented programming.
See, for example, Object Oriented Programming for the
Macintosh, by Kurt J. Schmucher, Hayden Book Company,
1986.

In the present invention, objects are preferably imple-
mented as part of a frame system that comprises frame
objects related by a semantic network. A description of
semantic networks can be found in “A Fundamental Tradeoff
in Knowledge Representation and Reasoning”, Readings in
Knowledge Representation, by Brachman and Leveseque,
Morgan Kaufman, San Mateo, 1985.

The use of object oriented programming, frame systems,
and the aforementioned view system simplifies the imple-
mentation of the processes of the present invention. In FIG.
7A, a conceptual representation of various objects in view
system is shown. The notepad application on the screen 42
forms a first or “root” layer, and the status bar 56 is
positioned in a second layer “over” the root layer 42. The
clock 58 and buttons 60-70 are positioned in a third layer
“over” the status bar 56.

In FIG. 7b, a cross-section taken along line 76—7b of
FIG. 7a further illustrates the conceptual layering of various
objects. The aforementioned viewing system automatically
handles “taps” and other gestures of the stylus 38 on the
screen 42 by returning information concerning which object
has been gestured and where on the object the gesture
occurred. For example, a gesture A on the screen 42 could
create an action for the notepad application. A gesture B on
the status bar 56 could be of part of a drag operation to move
the status bar on the screen 42. A gesture C on recognize
button 66 can activate a process associated with that button.
It is therefore clear that the object oriented programming and

10

15

20

25

30

35

40

45

50

55

60

65

8

view system software makes the implementation of the
processes of the present invention less cumbersome than
traditional programing techniques.

In FIG. 8, a process 200 for providing a gesture sensitive
button for graphical user interface is illustrated. The process
begins at step 202, and, in a step 204, it is determined
whether the stylus 38 is on the screen 42. If not, step 204
goes into a wait state. If the stylus is on the screen, data
points are collected in a step 206 and it is determined in a
step 208 whether the stylus has been lifted from the screen.
If not, process control is returned to step 206. After the stylus
has been lifted from the screen, it is determined in a step 210
whether the collection of data points forms a gesture asso-
ciated with a button in a step 210. If the gesture is not
associated with a button, the gesture is processed in a step
212 and the process 200 is completed as indicated at step
214. If it was determined by step 210 that a gesture was
associated with the button, then in a step 216 it is determined
whether the gesture is a tap. If the gesture was a tap, the
standard function for the button is performed in step 218 and
the process is completed as indicated by step 214. If the
gesture is associated with a button but is not a tap, then a step
220 determines whether the gesture is relevant to the button.
If the gesture is not relevant (i.e. that gesture means nothing
to that button) then the process is completed as indicated at
214. If the gesture is relevant to the button, then an alter-
native button action is processed in step 222 and the process
is completed at step 214.

In FIG. 9, a script table 224 helps determine: (a) whether
the gesture is relevant to the button; and (b) what to do when
that gesture is detected in association with the button. In this
example, a button detects three different types of gestures, a
“tap” 226, a “check-mark” 228, and an *“X-mark” 230. If the
tap gesture 226 is detected, the “script” for the indicated
process is to: (1) highlight the button 66 momentarily; (2)
toggle (i.e. turn off if on, turn on if off) the recognizers; and
(3) reverse the button state. As described previously, the
button 66 indicates that the recognizers are on when the
button says “recognize”, and indicates that they are turned
off when there is a diagonal line through the word “recog-
nize”. When the check-mark gesture 228 is found to be
associated with the button, the process script is to: (1)
highlight the button momentarily; and (2) pop up the rec-
ognizer palette 78. When the X-mark gesture 230 is
detected, the script is: (1) highlight the button 66 momen-
tarily; (2) turn on all of the recognizers; and (3) show the
recognizer button in the “on” state. In this example, other
gestures performed on the button 66 are considered “non-
relevant”. Also, a tap, check-mark, or X-mark gesture per-
formed elsewhere on the screen 42 would not be considered
relevant to the button 66.

1t is desirable that a given gesture should initiate a similar
type of process regardless of which button it contacts. For
example, a check mark could always means “START”, an
X-mark could always mean “STOP”, etc. The button then
provides the specific context for the command initiated by
the gesture.

While this invention has been described in terms of
several preferred embodiments, there are alterations, per-
mutations, and equivalents which fall within the scope of
this invention. It is therefore intended that the following
appended claims be interpreted as including all such alter-
ations, permutations, and equivalents as fall within the true
spirit and scope of the present invention.

What is claimed is:

1. A gesture sensitive button for a graphical user interface
comprising:



